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Abstract — Analysis is presented of resonators consisting of a section of
a dielectric-loaded waveguide shorted at both ends. The analysis includes
resonant frequency calculations, mode charts, and unioaded Q computa-
tions. Numerical results are presented for the unloaded Q’s of various
modes, as a function of the resonator parameters. Effects of losses in
different parts of the resonator wall on the unloaded Q are discussed, and
methods of improving these Q’s are explored.

Experimental verification of the theoretically derived results is made for
a number of resonators, and the measurements agree closely with theory.

1. INTRODUCTION

ANY APPLICATIONS require the availability of

microwave resonators with low loss and small size.
Dielectric-loaded waveguide resonators are suitable for such
applications as highly temperature stable oscillators [1], [2],
low-noise microwave synthesizers [3], and bandpass filters
[4]-[6]. This paper presents properties of resonators con-
sisting of a section of a dielectric-loaded waveguide shorted
at both ends with particular emphasis on the (ohmic) loss
mechanisms that affect their unloaded Q’s. Previous analy-
sis has considered losses only due to radiation from un-
shielded resonators [7]. Explicit closed-form analytical ex-
pressions for the unloaded Q’s are derived for the hybrid
modes, with the contributions of the losses in each section
of the resonator’s boundary separately identified. Numeri-
cal results are presented for different modes.

A number of dielectric-loaded resonators were con-
structed, and their resonant frequencies and unloaded Q’s
were accurately measured. The experimentally measured
results are presented, and are found to agree closely with
the theoretical calculations.

II. REesoNATOR GEOMETRY, RESONANT FREQUENCY,
AND MODE CHARTS

The dielectric-loaded resonator geometry under consid-
eration is shown in Fig. 1. It consists of a section of length
L of a perfectly conducting outer cylindrical wavegnide of
radius b, axially loaded with a concentric dielectric cylin-
der of radius a and relative permittivity €,. The region
a<r<b has reljative permittivity €, . The two ends of the
resonator are perfectly conducting planes. Analysis of this
type of resonator is very useful for the understanding of
the more general case where the dielectric rod is shorter
than the total cylinder length L.
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The structure of Fig. 1 can resonate in various modes
which correspond to the modes of propagation in the
cylindrical loaded waveguide discussed in {8]. These modes
can be axially symmetric (i.e., transverse electric TE,,,, or
transverse magnetic TM,,,,,), or hybrid modes HE,, . The
resonant frequency of any of these modes is computed
from applying the boundary conditions that the tangential
electric fields must vanish on the ends of the resonator.
This condition yields

sinBL=0 PBL=na, n=1,2,--- (1)

where 8 is the propagation constant of the mode in an
infinite waveguide with the same cross section as the
resonator (B82=—y?). Determination of the resonant
frequency involves solving the characteristic equation (2)
for the wave number £, (see [8] for details)

G,(£,0) =Ula®y + k2a*V, 1, =0 @)
where
g=ki+y* I=—(k3+v?)
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R, (§r)= Jn(sla)l:

and where J,(-), I,(-), and K,(-) are the Bessel functions
and the modified Bessel functions of first and second
kinds, respectively.

One of the most important considerations in the area of
dielectric-loaded resonators is the ability to accurately pre-
dict the resonant frequencies of the modes that can exist
within the resonator as a function of its parameters so that
desired modes can be chosen and spurious modes may be
avoided. For homogeneously filled waveguides, this is usu-
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Fig. 1.

Dielectric-loaded resonator consisting of a short-circuited sec-
tion of a dielectric-loaded waveguide.

ally done using what is commonly known as the “mode
charts.” The mode charts for the homogeneously filled
waveguides are plots of (fD)? versus (D/L)? where D is
the waveguide diameter, f is the resonant frequency, and
L is the resonator length. The choice of these particular
combinations of parameters is made since this choice leads
to a simple linear relationship. For the case of the dielec-
tric-loaded resonator, the situation is more complex since
there are several additional parameters. However, an at-
tempt to construct similar mode charts for dielectric-loaded
resonators revealed some interesting similarities to the case
of homogeneously filled resonators. Fig. 2 is a mode chart
for a resonator with a=0.394", b=0.5", and €, = 37.6.
The figure is a plot of (fD)? versus (D /L)% where D = 2a
is the dielectric diameter. The plots are almost linear,
except near small values of (D/L)? where significant
deviation from linearity is apparent.

1L

Determination of the resonators unloaded Q’s involves
the calculation of the energy (U) stored in the resonator
and the power (W,) lost in the metallic walls and in the
dielectric. The unloaded Q is then calculated from the
definition

UNLOADED Q CALCULATIONS

wU
0-5 (3)
where w, is the resonant angular frequency.

Although the calculation of the Q is conceptually simple,
the details are rather involved. In the following, closed-form
expressions are given of the relevant quantities.

First, the energy stored U is computed as the sum of the
stored energies both inside the dielectric ¢, (U;) and in the
region between the dielectric and the conducting wave-
guide walls (U,). Thus

U=U,+U, (4)

where

a f2q

E-E*rdrd¢ dz

Il

l\)l,a

0

E-E*rdrd¢dz

ll

A
ff:’ A

E is the field in the resonator given in [8]. The integrals can
be calculated in a closed form, and the results are listed in
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Fig. 2. Mode chart of dielectric-loaded resonator. ¢ = 0.3941in, b=1.24,
¢, =376, ¢,=10.
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The power lost in the resonator walls and in the dielec-
tric are computed based on the low-loss assumptions, that
. the fields are unperturbed by the losses. The surface cur-
rent density in the conducting walls is determined from the
tangential magnetic fields. The dielectric loss is the product
of the stored energy in the dielectric and the loss tangent.
Accordingly, the dielectric loss is merely proportional to U;
given in (5), while the conductor loss W, is expressed as

W =W, +2W, (7)
where W, is the loss in the side walls (or circumference) of
the resonator and Wy is the loss in each of the ends (base
and top). Wy is further separated as

Wp=Wg + W, (8)
where Wy is the loss in the base region 0 <r < a covered

by the dielectric (e,)), and Wy, is the loss in the annular
base region a<r<b under the dielectric (¢, ). These

losses are evaluated from the integrals

RS 29 L
= HH!+ HHY)bdod
‘/(;‘/(;(4)(1) zz) ¢Z

W,
52

kﬂ

Wy, —/”f (H,H*+ H,H})rdrdg

W= =2 [ ["(H,Hp + B ) rdrdg
0 a

| X

where R is the conductor’s surface resistance, H,, H,,
and H, are the magnetic field components in the resonator
given in [8]. Closed-from expressions for the above in-
tegrals are given in the following:
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IV. NUMERICAL AND EXPERIMENTAL RESULTS

To ascertain the effects of the losses in the various parts
of the resonator, it is convenient to express the total
unloaded @ in terms of the factors Qg, Q 51> @g2 and Qp
corresponding to the losses Wy, Wy,, Wy,, and W), respec-
tively, where W), is the loss in the dielectric

1 1 + 1 . 1 N 1 (12)
@ O 9m 9m @b

Variations of each of these Q’s (normalized by (8/A),
where § is the skin depth and A is the wavelength in the
dielectric medium e, at resonance), with (2a/L) and
(b/a) as parameters are shown in Figs. 3-6 for the HE,,,
mode. For (b/a)>1.4, the loss Wy becomes negligibly
small. Fig. 6 shows that for the cases analyzed (e,>¢,),
Qp will always be approximately equal to 1/tand (here 8
is the loss tangent of €, ). Varation of the total normalized
unloaded Q (due to conductor loss only) with (2a /L) is
shown in Fig. 7.

Fig. 8 shows the total normalized unloaded Q due to the
conductor loss only for the first few hybrid modes.

To experimentally verify the analysis, several dielectric-
loaded cavities were constructed and their resonant fre-
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quencies and unloaded Q’s were measured. The dielectric
constant of the material used in the resonator was first
measured accurately using the technique described in [9].
To eliminate the inaccuracy due to the variation of the
dielectric constant from sample to sample, the same dielec-
tric sample was used in cavities of equal lengths but
different diameters. The dielectric sample was supported
within each cavity by means of an annular piece of very
low-loss foam material (e,=1.02). The resonators were
coupled very lightly to coaxial lines by means of probes
extending slightly into the cavitites at their middle. These
probes couple to the radial electric fields of the HE,,,
mode. The resonant frequency and unloaded Q’s were
measured by the amplitude reflection method [10). Extra
care had to be taken to ensure that the dielectric resonators
ends had tight contact with both the end planes of the
metallic cavity. Both the resonant frequency and unloaded
Q’s were extremely sensitive to this contact.

Fig. 9 is a sample measured result of the resonant
Ifrequency variation with the ratio (b/a). In this figure, the
theoretical curve (shown by the solid line) has a maximum
deviation of 0.23 percent from the measured data.

The unloaded Q’s of the same resonators were also
measured, and the comparison with the calculated values is
shown in Table L
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Fig. 9. Calculated and measured resonant frequency of an HE,;;-mode
dielectric-loaded resonator. a = 0,3436 in, €, = 29.45, L =0.3002 in.

: TABLE 1 :
CALCULATED AND MEASURED RESULTS OF THE UNLOADED Q’S
(E) Measured Qu *Calculated(*)Q %
K .

1.3 4071 3287 -19.3%

1.5 3258 3262 0.12%

1.7 3992 3254 -18.5%

1.9 3488 3250\ ~6.8%

7
{*) Based on Aluminum conductivity of 3.72 x 10 mhos/meter.

V. DiscussioN AND CONCLUSION

Examination of Figs. 3-35, and 7 shows that for (2a /L)
>1, the loss W, dominates the other conductor losses W,
and W;. Therefore, qualitatively, to minimize the losses
W, the resonator should be constructed so that the con-
ducting end walls are not contacting the dielectric. The
fields outside the dielectric would decay rapidly in the axial
direction, greatly reducing the current density (and, hence,
the losses) on the end walls. This, however, would perturb
the modal fields in the resonator; the resonant frequencies
and unloaded Q’s will not be as simple to compute as in
the present case. The measured unloaded Q’s given in
Table I are almost always larger than the theoretical values.
This perhaps is due to the imperfect contact between the
dielectric and the conducting ends of the cavity, which
tends to reduce the losses Wy, in the base and top regions.

When all the conducting walls are far enough from the
dielectric, the conductor losses will be negligible with re-
spect to the dielectric loss, and, therefore, the unloaded Q
in this case will be equal to approximately 1 /tan 8§, regard-
less of the mode.

The closed-form analytical expressions for the energy
stored and the losses in dielectric-loaded resonators pre-
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sented in this paper allowed the determination of the
quantitative distribution of these parameters.
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